SUPPLEMENTARY TABLES AND FIGURES

Supplementary file 1a: Cell line characteristics

Name	Species	Туре	Genome size (Gbp)	Reference
HeLa K	Homo sapiens	Cervical adenocarcinoma	9.682±0.002	(Erfle et al., 2007)
HeLa K GFP-PCNA	Homo sapiens	Cervical adenocarcinoma	9.682±0.002	(Chagin et al., 2016)
HeLa K GFP-RPA34	Homo sapiens	Cervical adenocarcinoma	9.682±0.002	This study
HeLa K FRTLacZ	Homo sapiens	Cervical adenocarcinoma	9.682±0.002	(Chagin et al., 2016)
IMR90	Homo sapiens	Fibroblasts from lung tissue	6.37	(Nichols et al., 1977)

Supplementary file 1b: Plasmid characteristics

Name	pc number	Fluorophore	Protein of Interest	Promoter	References
pmiRFP670-PCNA	3385	miRFP670	Human PCNA	CMV	(Rausch et al., 2021)
pFRT-B-GRPA	1232	GFP	Human RPA34	EF1α	This study
pFRT-B-GPCNA	1274	GFP	Human PCNA	EF1α	(Chagin et al., 2016)

* pc: plasmid collection.

Supplementary file 1c: Nucleotide and chemical characteristics

Name	Application	Detection	Cat #	Company
Cy3-dUTP	Replication labeling (Labeling of nascent DNA)	-	ENZ-42501	Enzo life sciences, Farmingdale, NY, USA
Aphidicolin	Replisome disruption by polymerase inhibition	-	A0781-1MG	Sigma-Aldrich, St Louis, MO, USA
5-ethynyl-2'- deoxyuridine (EdU)	Labeling of nascent DNA in pulse (chase) experiments	ClickIT chemistry	E10415	Thermo Fisher Scientific, Waltham, MA, USA

Supplementary file 1d: Primary and secondary antibody characteristics

Reactivity	Host	Clonality	Dilution	Application	Cat / Clone [#]	Company / References
anti RPA34	Mouse	Monoclonal	1:2	IF, WB	9H8H4 [#]	Gift from Mark Kenny/J. Hurwitz (Kenny et al., 1990)
anti RPA70A	Mouse	Monoclonal	1:2	IF, WB	7G9E3*	Gift from Mark Kenny/J. Hurwitz (Kenny et al., 1990)
Anti MCM2	Rabbit	Monoclonal	1:5000 IF, 1:10000 WB	IF, WB	ab 108935/ EPR4120	Abcam, Cambridge, United Kingdom
anti MCM2pS108	Rabbit	Monoclonal	1:1000	IF,WB	3267-1	Epitomics, Burlingame, CA, United States
anti pol Alpha	Mouse	Monoclonal	Undiluted	IF,WB	SJK-287-38 [#]	ATCC (Tanaka et al., 1982)
anti pol Delta	Mouse	Monoclonal	1:500	IF,WB	610972	BD biosciences, New Jersey, USA (Li et al., 2016)
anti pol Epsilon	Rabbit	Polyclonal	1:500	IF, WB	GTX132100	GeneTex, Irvine, California, United States
anti PCNA	Mouse	Monoclonal	1:100	IF*,WB	M0879 / PC10 [#]	Dako, Hamburg, Germany (Waseem and Lane, 1990)
anti Histone H3	Rat	Monoclonal	1:250	WB	61647/ 1C8B2 [#]	Active Motif, California, USA
anti MacroH2A1	Rabbit	Polyclonal	1:1000	WB	07-219	Active Motif, California, USA
anti GFP	Rat	Monoclonal	1:1000	WB	3H9#	Chromotek 3H9, Planegg-Martinsried, Germany
Anti tubulin alpha	Mouse	Monoclonal	1:5000	WB	clone DM1A [#] / T9026	Sigma, Missouri, United States
anti-mouse IgG Cy3	Donkey	Polyclonal	1:800	IF (fluorescent secondary)	715-165-151	The Jackson Laboratory, Bar Harbor, ME, USA

anti-rabbit IgG Cy3	Donkey	Polyclonal	1:800	IF (fluorescent secondary)	711-165-152	The Jackson Laboratory, Bar Harbor, ME, USA
anti-mouse IgG Cy5	Donkey	Polyclonal	1:800	F (fluorescent secondary)	715-175-150	The Jackson Laboratory, Bar Harbor, ME, USA
anti-rabbit IgG Cy5	Donkey	Polyclonal	1:800	F (fluorescent secondary)	711-175-152	The Jackson Laboratory, Bar Harbor, ME, USA
anti-mouse IgG AF488	Goat	Polyclonal	1:800	IF (fluorescent secondary)	2120125	Invitrogen, Waltham, Massachusetts, USA
anti-rabbit IgG AF488	Donkey	Polyclonal	1:800	IF (fluorescent secondary)	A11034	Invitrogen, Waltham, Massachusetts, USA
anti rat IgG HRP	Goat	Polyclonal	1:5000	WB (HRP secondary)	112-035-068	The Jackson Laboratory, Bar Harbor, ME, USA
anti mouse IgG HRP	Sheep	Polyclonal	1:5000	WB (HRP secondary)	NA931	Amersham pharmacia, Amersham, United Kingdom

*Methanol treatment required #Clone number

Supplementary file 1e: Imaging systems characteristics

Microscope/ Company	Lasers/lamps	Filters (ex. & em. [nm])*	Objectives/ lenses	Detection system	Incubation system	Application
Ultra-View VoX spinning disk microscope/ PerkinElmer Life Sciences, UK	solid state diode lasers (405 nm, 488 nm, 561 nm, 640 nm)	405/488/56 8/640** 405: 415–475 488: 505–549 561: 580–650 640: 664–754	oil immersion 60x Plan- Apochromat (NA 1.45)	cooled 14-bit Hamamatsu® C9100-50 EMCCD	closed live- cell microscopy chamber (ACU control, Olympus) for time-lapse microscopy	time-lapse microscopy & confocal z- stack imaging
Widefield microscope Axiovert 200 /Zeiss, Germany	HBO100 mercury lamp	488: 473-491 & 506-534 561: 550-580 & 590-650 640: 590-650 & 663-738	oil immersion 63x Plan- Apochromat (NA 1.4)	12-bit AxioCam mRM	-	Multi channel wide-field imaging

Leica SP5 II confocal microscope /Wetzlar, Germany	405 nm diode 488 nm Argon, 561 nm DPSS, 633 nm HeNe	AOBS beam splitter	HCX PL APO 63x / 1.4-0.6 oil lambda blue & HCX PL APO 100x (NA 1.44) oil Corr CS	2 HyD Hybrid Detectors	-	confocal z- stack imaging
Amersham Al600 imager	Chemiluminesce nce, UV transillumination	-	large aperture FUJINON™ f/0.85 43 mm	16-bit Peltier cooled Fujifilm Super CCD	-	Western blots and DNA agarose gels
Operetta high throughput imaging/ PerkinElmer Life Sciences, UK	Xenon fiber-optic light source, 300 W, 360 – 640 nm continuous spectrum LED light source for transmission mode	ex:360/400, 460/490, 560/580 em: 410/480, 500/550, 560/630	20x or 40x air (0.45 NA and 0.95 NA) long WD***	14 bit Jenoptik firecamj203 Sony Chip ICX285 cooled 20°C below environment	_	high throughput, high content imaging and image analysis
Nikon TiE2 inverted with crest spinning disk unit/ Nikon, Japan	SPECTRA X light engine 395/25 nm with 295 mW 440/20 nm with 256 mW 470/24 nm with 196 mW 510/25 nm with 62 mW 540/30 nm with 231 mW 550/15 nm with 260 mW 575/25 nm with 310 mW	LED- DA/FI/TR/Cy5- 4X-B Quadbandpasse x:390/18, 475/35, 535/50 em:460/60, 530/43, 580LP	40x air (0.95 NA) & 250 μm WD***	Cooled Nikon Qi2 camera and 16.25 megapixel sCMOS sensor. readout noise is: 2.2. electron	-	high throughput, high content imaging and image analysis

* ex.: excitation & em.: emission, ** dichroic specification, *** WD: working distance.

Supplementary file 1f: Data description for DNA quantification

Name	Cell stage	DAPI SUM	Correction factor (C)	Corrected genome size (GSxC) Gbp
Cell1_crop_DAPI_Cy3dUTP_HeLa	SE	6.55E+08	1.05	10.185
Cell2_crop_DAPI_Cy3dUTP_HeLa	SE	8.49E+08	1.05	10.185
Cell3_crop_DAPI_Cy3dUTP_HeLa	SE	9.68E+08	1.05	10.185
Cell4_crop_DAPI_Cy3dUTP_HeLa	SM	1.14E+09	1.25	12.125
Cell5_crop_DAPI_Cy3dUTP_HeLa	SL	1.15E+09	1.77	17.169
Cell6_crop_DAPI_Cy3dUTP_HeLa	SE	8.29E+08	1.05	10.185
Cell7_crop_DAPI_Cy3dUTP_HeLa	SE	9.49E+08	1.05	10.185
Cell8_crop_DAPI_Cy3dUTP_HeLa	SM	1.01E+09	1.25	12.125
Cell9_crop_DAPI_Cy3dUTP_HeLa	SM	1.17E+09	1.25	12.125
Cell10_crop_DAPI_Cy3dUTP_HeLa	SM	1.00E+09	1.25	12.125
Cell11_crop_DAPI_Cy3dUTP_HeLa	SL	1.34E+09	1.77	17.169
Cell12_crop_DAPI_Cy3dUTP_HeLa	SM	1.06E+09	1.25	12.125
Cell13_crop_DAPI_Cy3dUTP_HeLa	SL	1.49E+09	1.77	17.169
Cell14_crop_DAPI_Cy3dUTP_HeLa	SE	8.71E+08	1.05	10.185
Cell15_crop_DAPI_Cy3dUTP_HeLa	SL	1.18E+09	1.77	17.169
Cell16_crop_DAPI_Cy3dUTP_HeLa	SL	1.48E+09	1.77	17.169
Cell17_crop_DAPI_Cy3dUTP_HeLa	SL	1.09E+09	1.77	17.169
Cell18_crop_DAPI_Cy3dUTP_HeLa	SL	1.07E+09	1.77	17.169

Cell19_crop_DAPI_Cy3dUTP_HeLa	SL	1.17E+09	1.77	17.169
Cell20_crop_DAPI_Cy3dUTP_HeLa	SM	1.09E+09	1.25	12.125
Cell21_crop_DAPI_Cy3dUTP_HeLa	SL	1.02E+09	1.77	17.169
Cell22_crop_DAPI_Cy3dUTP_HeLa	SL	1.02E+09	1.77	17.169
Cell23_crop_DAPI_Cy3dUTP_HeLa	SE	9.33E+08	1.05	10.185
Cell24_crop_DAPI_Cy3dUTP_HeLa	SE	8.90E+08	1.05	10.185
Cell25_crop_DAPI_Cy3dUTP_HeLa	SE	7.67E+08	1.05	10.185
Cell26_crop_DAPI_Cy3dUTP_HeLa	SE	8.39E+08	1.05	10.185
Cell27_crop_DAPI_Cy3dUTP_HeLa	SM	1.04E+09	1.25	12.125
Cell28_crop_DAPI_Cy3dUTP_HeLa	SM	1.01E+09	1.25	12.125
Cell29_crop_DAPI_Cy3dUTP_HeLa	SM	1.05E+09	1.25	12.125
Cell30_crop_DAPI_Cy3dUTP_HeLa	SM	1.02E+09	1.25	12.125
Cell1_DAPI_Cy3dUTP_IMR90	-	1.08E+09	-	6.37
Cell2_DAPI_Cy3dUTP_IMR90	-	5.04E+08	-	6.37
Cell3_DAPI_Cy3dUTP_IMR90	-	1.09E+09	-	6.37
Cell4_DAPI_Cy3dUTP_IMR90	-	8.72E+08	-	6.37
Cell5_DAPI_Cy3dUTP_IMR90	-	1.08E+09	-	6.37
Cell6_DAPI_Cy3dUTP_IMR90	-	5.39E+08	-	6.37
Cell7_DAPI_Cy3dUTP_IMR90	-	6.33E+08	-	6.37
Cell8_DAPI_Cy3dUTP_IMR90	-	5.52E+08	-	6.37

Cell9_DAPI_Cy3dUTP_IMR90	-			
		6.20E+08	-	6.37
Cell10_DAPI_Cy3dUTP_IMR90	-			
		6.68E+08	-	6.37
Cell13_DAPI_Cy3dUTP_IMR90	-			
		7.43E+08	-	6.37
Cell14_DAPI_Cy3dUTP_IMR90	-			
		6.53E+08	-	6.37
Cell15_DAPI_Cy3dUTP_IMR90	-			
		7.25E+08	-	6.37
Cell16_DAPI_Cy3dUTP_IMR90	-			
		4.41E+08	-	6.37
Cell17_DAPI_Cy3dUTP_IMR90	-			
		1.29E+09	-	6.37
Cell18_DAPI_Cy3dUTP_IMR90	-			
		7.51E+08	-	6.37

Supplementary file 1g: Data description for 2D confocal fixed images

Name	Cell stage	Time (s)	Channels*	Pixel size (nm)	frame rate (ms)
Cell1_HeLa_fixedcells.tif	SE	40	3	120	500
Cell2_HeLa_fixedcells.tif	SE	40	3	120	500
Cell3_HeLa_fixedcells.tif	SE	40	3	120	500
Cell4_HeLa_fixedcells.tif	SM	40	3	120	500
Cell5_HeLa_fixedcells.tif	SM	40	3	120	500
Cell6_HeLa_fixedcells.tif	SM	40	3	120	500
Cell7_HeLa_fixedcells.tif	SM	40	3	120	500
Cell8_HeLa_fixedcells.tif	SL	40	3	120	500

Cell9_HeLa_fixedcells.tif	SL	40	3	120	500
Cell10_HeLa_fixedcells.tif	SL	40	3	120	500
Cell11_HeLa_fixedcells.tif	SE	40	3	120	500
Cell12_HeLa_fixedcells.tif	SE	40	3	120	500
Cell13_HeLa_fixedcells.tif	SE	40	3	120	500
Cell14_HeLa_fixedcells.tif	SL	40	3	120	500
Cell15_HeLa_fixedcells.tif	SE	40	3	120	500
Cell16_HeLa_fixedcells.tif	SE	40	3	120	500
Cell17_HeLa_fixedcells.tif	SL	40	3	120	500
Cell18_HeLa_fixedcells.tif	G2	40	3	120	500
Cell19_HeLa_fixedcells.tif	G1	40	3	120	500
Cell20_HeLa_fixedcells.tif	SM	40	3	120	500
Cell21_HeLa_fixedcells.tif	SE	40	3	120	500
Cell22_HeLa_fixedcells.tif	SE	40	3	120	500
Cell23_HeLa_fixedcells.tif	SL	40	3	120	500
Cell24_HeLa_fixedcells.tif	SM	40	3	120	500
Cell25_HeLa_fixedcells.tif	SM	40	3	120	500
Cell26_HeLa_fixedcells.tif	SE	40	3	120	500
Cell27_HeLa_fixedcells.tif	SE	40	3	120	500
Cell28_HeLa_fixedcells.tif	SE	40	3	120	500

Cell29_HeLa_fixedcells.tif	SM	40	3	120	500
Cell30_HeLa_fixedcells.tif	SE	40	3	120	500
Cell31_HeLa_fixedcells.tif	SL	40	3	120	500
Cell32_HeLa_fixedcells.tif	SE	40	3	120	500
Cell33_HeLa_fixedcells.tif	SE	40	3	120	500
Cell34_HeLa_fixedcells.tif	SE	40	3	120	500
Cell35_HeLa_fixedcells.tif	SE	40	3	120	500
Cell1_IMR90_fixed.tif	-	40	3	120	500
Cell2_IMR90_fixed.tif	-	40	3	120	500
Cell3_IMR90_fixed.tif	-	40	3	120	500
Cell4_IMR90_fixed.tif	-	40	3	120	500
Cell5_IMR90_fixed.tif	-	40	3	120	500
Cell6_IMR90_fixed.tif	-	40	3	120	500
Cell7_IMR90_fixed.tif	-	40	3	120	500
Cell8_IMR90_fixed.tif	-	40	3	120	500
Cell9_IMR90_fixed.tif	-	40	3	120	500
Cell10_IMR90_fixed.tif	-	40	3	120	500
Cell11_IMR90_fixed.tif	-	40	3	120	500
Cell12_IMR90_fixed.tif	-	40	3	120	500
Cell13_IMR90_fixed.tif	-	40	3	120	500

Cell14_IMR90_fixed.tif	-	40	3	120	500
Cell15_IMR90_fixed.tif	-	40	3	120	500
Cell16_IMR90_fixed.tif	-	40	3	120	500
Cell17_IMR90_fixed.tif	-	40	3	120	500
Cell18_IMR90_fixed.tif	-	40	3	120	500

Supplementary file 1h: Data description for 2D confocal live images

Name	Cell stage	Time (s)	Exposure time (ms)	Channels*	Frame rate (ms)
n001_G_Aph_4_AT_c01.tif	G1	40	300	1	500
n001_G_Aph_4_AT_c02.tif	G1	-	500	3	-
n001_G_Aph_4_BT_c01.tif	G1	40	300	1	500
n001_G_Aph_4_BT_c02.tif	G1	-	500	3	-
n002_G_Aph_4_AT_c01.tif	G2	40	300	1	500
n002_G_Aph_4_AT_c02.tif	G2	-	500	3	-
n002_G_Aph_4_BT_c01.tif	G2	40	300	1	500
n002_G_Aph_4_BT_c02.tif	G2	-	500	3	-
n003_G_Aph_5_AT_c01.tif	G2	40	300	1	500
n003_G_Aph_5_AT_c02.tif	G2	-	500	3	-
n003_G_Aph_5_BT_c01.tif	G2	40	300	1	500

n003_G_Aph_5_BT_c02.tif	G2	-	500	3	-
n004_G_Aph_5_AT_c01.tif	G2	40	300	1	500
n004_G_Aph_5_AT_c02.tif	G2	-	500	3	-
n004_G_Aph_5_BT_c01.tif	G2	40	300	1	500
n004_G_Aph_5_BT_c02.tif	G2	-	500	3	-
n005_G_Aph_5_AT_c01.tif	G1	40	300	1	500
n005_G_Aph_5_AT_c02.tif	G1	-	500	3	-
n005_G_Aph_5_BT_c01.tif	G1	40	300	1	500
n005_G_Aph_5_BT_c02.tif	G1	-	500	3	-
n006_G_Aph_6_AT_c01.tif	G2	40	300	1	500
n006_G_Aph_6_AT_c02.tif	G2	-	500	3	-
n006_G_Aph_6_BT_c01.tif	G2	40	300	1	500
n006_G_Aph_6_BT_c02.tif	G2	-	500	3	-
n007_G_Aph_10_AT_c01.tif	G1	40	300	1	500
n007_G_Aph_10_AT_c02.tif	G1	-	500	3	-
n007_G_Aph_10_BT_c01.tif	G1	40	300	1	500
n007_G_Aph_10_BT_c02.tif	G1	-	500	3	-
n008_G_Aph_10_AT_c01.tif	G1	40	300	1	500
n008_G_Aph_10_AT_c02.tif	G1	-	500	3	-
n008_G_Aph_10_BT_c01.tif	G1	40	300	1	500

n008_G_Aph_10_BT_c02.tif	G1	-	500	3	-
n009_G_Aph_10_AT_c01.tif	G1	40	300	1	500
n009_G_Aph_10_AT_c02.tif	G1	-	500	3	-
n009_G_Aph_10_BT_c01.tif	G1	40	300	1	500
n009_G_Aph_10_BT_c02.tif	G1	-	500	3	-
n0012_G_Aph_11_AT_c01.tif	G2	40	300	1	500
n0012_G_Aph_11_AT_c02.tif	G2	-	500	3	-
n0012_G_Aph_11_BT_c01.tif	G2	40	300	1	500
n0012_G_Aph_11_BT_c02.tif	G2	-	500	3	-
n0013_G_Aph_11_AT_c01.tif	G2	40	300	1	500
n0013_G_Aph_11_AT_c02.tif	G2	-	500	3	-
n0013_G_Aph_11_BT_c01.tif	G2	40	300	1	500
n0013_G_Aph_11_BT_c02.tif	G2	-	500	3	-
n0015_G_Aph_15_AT_c01.tif	G1	40	300	1	500
n0015_G_Aph_15_AT_c02.tif	G1	-	500	3	-
n0015_G_Aph_15_BT_c01.tif	G1	40	300	1	500
n0015_G_Aph_15_BT_c02.tif	G1	-	500	3	-
n0017_G_Aph_16_AT_c01.tif	G1	40	300	1	500
n0017_G_Aph_16_AT_c02.tif	G1	-	500	3	-
n0017_G_Aph_16_BT_c01.tif	G1	40	300	1	500

n0017_G_Aph_16_BT_c02.tif	G1	-	500	3	-
n0018_G_Aph_18_AT_c01.tif	G1	40	300	1	500
n0018_G_Aph_18_AT_c02.tif	G1	-	500	3	-
n0018_G_Aph_18_BT_c01.tif	G1	40	300	1	500
n0018_G_Aph_18_BT_c02.tif	G1	-	500	3	-
n0020_G_Aph_21_AT_c01.tif	G2	40	300	1	500
n0020_G_Aph_21_AT_c02.tif	G2	-	500	3	-
n0020_G_Aph_21_BT_c01.tif	G2	40	300	1	500
n0020_G_Aph_21_BT_c02.tif	G2	-	500	3	-
n001_S_Aph_1_AT_c01.tif	S	40	300	1	500
n001_S_Aph_1_AT_c02.tif	S	-	500	3	-
n001_S_Aph_1_BT_c01.tif	S	40	300	1	500
n001_S_Aph_1_BT_c02.tif	S	-	500	3	-
n002_S_Aph_1_AT_c01.tif	S	40	300	1	500
n002_S_Aph_1_AT_c02.tif	S	-	500	3	-
n002_S_Aph_1_BT_c01.tif	S	40	300	1	500
n002_S_Aph_1_BT_c02.tif	S	-	500	3	-
n004_S_Aph_1_AT_c01.tif	S	40	300	1	500
n004_S_Aph_1_AT_c02.tif	S	-	500	3	-
n004_S_Aph_1_BT_c01.tif	S	40	300	1	500

n004_S_Aph_1_BT_c02.tif	S	-	500	3	-
n006_S_Aph_2_AT_c01.tif	S	40	300	1	500
n006_S_Aph_2_AT_c02.tif	S	-	500	3	-
n006_S_Aph_2_BT_c01.tif	S	40	300	1	500
n006_S_Aph_2_BT_c02.tif	S	-	500	3	-
n008_S_Aph_4_AT_c01.tif	S	40	300	1	500
n008_S_Aph_4_AT_c02.tif	S	-	500	3	-
n008_S_Aph_4_BT_c01.tif	S	40	300	1	500
n008_S_Aph_4_BT_c02.tif	S	-	500	3	-
n009_S_Aph_5_AT_c01.tif	S	40	300	1	500
n009_S_Aph_5_AT_c02.tif	S	-	500	3	-
n009_S_Aph_5_BT_c01.tif	S	40	300	1	500
n009_S_Aph_5_BT_c02.tif	S	-	500	3	-
n0012_S_Aph_6_AT_c01.tif	S	40	300	1	500
n0012_S_Aph_6_AT_c02.tif	S	-	500	3	-
n0012_S_Aph_6_BT_c01.tif	S	40	300	1	500
n0012_S_Aph_6_BT_c02.tif	S	-	500	3	-
n0013_S_Aph_7_AT_c01.tif	S	40	300	1	500
n0013_S_Aph_7_AT_c02.tif	S	-	500	3	-
n0013_S_Aph_7_BT_c01.tif	S	40	300	1	500

n0013_S_Aph_7_BT_c02.tif	S	-	500	3	-
n0014_S_Aph_7_AT_c01.tif	S	40	300	1	500
n0014_S_Aph_7_AT_c02.tif	S	-	500	3	-
n0014_S_Aph_7_BT_c01.tif	S	40	300	1	500
n0014_S_Aph_7_BT_c02.tif	S	-	500	3	-
n0015_S_Aph_8_AT_c01.tif	S	40	300	1	500
n0015_S_Aph_8_AT_c02.tif	S	-	500	3	-
n0015_S_Aph_8_BT_c01.tif	S	40	300	1	500
n0015_S_Aph_8_BT_c02.tif	S	-	500	3	-
n0016_S_Aph_8_AT_c01.tif	S	40	300	1	500
n0016_S_Aph_8_AT_c02.tif	S	-	500	3	-
n0016_S_Aph_8_BT_c01.tif	S	-	500	3	500
n0016_S_Aph_8_BT_c02.tif	S	40	300	1	-
n0017_S_Aph_8_AT_c01.tif	S	-	500	3	500
n0017_S_Aph_8_AT_c02.tif	S	40	300	1	-
n0017_S_Aph_8_BT_c01.tif	S	-	500	3	500
n0017_S_Aph_8_BT_c02.tif	S	40	300	1	-
n0018_S_Aph_8_AT_c01.tif	S	-	500	3	500
n0018_S_Aph_8_AT_c02.tif	S	40	300	1	-
n0018_S_Aph_8_BT_c01.tif	S	-	500	3	500

n0018_S_Aph_8_BT_c02.tif	S	40	300	1	-
n0019_S_Aph_9_AT_c01.tif	S	-	500	3	500
n0019_S_Aph_9_AT_c02.tif	S	40	300	1	-
n0019_S_Aph_9_BT_c01.tif	S	-	500	3	500
n0019_S_Aph_9_BT_c02.tif	S	-	500	3	-
n0020_S_Aph_9_AT_c01.tif	S	40	300	1	500
n0020_S_Aph_9_AT_c02.tif	S	-	500	3	-
n0020_S_Aph_9_BT_c01.tif	S	40	300	1	500
n0020_S_Aph_9_BT_c02.tif	S	-	500	3	-
n0021_S_Aph_1_0_AT_c01.tif	S	40	300	1	500
n0021_S_Aph_1_0_AT_c02.tif	S	-	500	3	-
n0021_S_Aph_1_0_BT_c01.tif	S	40	300	1	500
n0021_S_Aph_1_0_BT_c02.tif	S	-	500	3	-
n0022_S_Aph_1_2_AT_c01.tif	S	40	300	1	500
n0022_S_Aph_1_2_AT_c02.tif	S	-	500	3	-
n0022_S_Aph_1_2_BT_c01.tif	S	40	300	1	500
n0022_S_Aph_1_2_BT_c02.tif	S	-	500	3	-
n0023_S_Aph_1_3_AT_c01.tif	S	40	300	1	500
n0023_S_Aph_1_3_AT_c02.tif	S	-	500	3	-
n0023_S_Aph_1_3_BT_c01.tif	S	40	300	1	500

n0023_S_Aph_1_3_BT_c02.tif	S	-	500	3	-
n0024_S_Aph_1_4_AT_c01.tif	S	40	300	1	500
n0024_S_Aph_1_4_AT_c02.tif	S	-	500	3	-
n0024_S_Aph_1_4_BT_c01.tif	S	40	300	1	500
n0024_S_Aph_1_4_BT_c02.tif	S	-	500	3	-
n0025_S_Aph_1_7_AT_c01.tif	S	40	300	1	500
n0025_S_Aph_1_7_AT_c02.tif	S	-	500	3	-
n0025_S_Aph_1_7_BT_c01.tif	S	40	300	1	500
n0025_S_Aph_1_7_BT_c02.tif	S	-	500	3	-
n0026_S_Aph_1_7_AT_c01.tif	S	40	300	1	500
n0026_S_Aph_1_7_AT_c02.tif	S	-	500	3	-
n0026_S_Aph_1_7_BT_c01.tif	S	40	300	1	500
n0026_S_Aph_1_7_BT_c02.tif	S	-	500	3	-
n0027_S_Aph_21_AT_c01.tif	S	40	300	1	500
n0027_S_Aph_21_AT_c02.tif	S	-	500	3	-
n0027_S_Aph_21_BT_c01.tif	S	40	300	1	500
n0027_S_Aph_21_BT_c02.tif	S	-	500	3	-
n0028_S_Aph_21_AT_c01.tif	S	40	300	1	500
n0028_S_Aph_21_AT_c02.tif	S	-	500	3	-
n0028_S_Aph_21_BT_c01.tif	S	40	300	1	500

n0028_S_Aph_21_BT_c02.tif	S	-	500	3	-
n0001_coloc_c02.tif	S	40	300	2	500
n0002_coloc_c02.tif	S	40	300	2	500
n0003_coloc_c02.tif	S	40	300	2	500
n0004_coloc_c02.tif	S	40	300	2	500
n0005_coloc_c02.tif	S	40	300	2	500
n0006_coloc_c02.tif	S	40	300	2	500
n0007_coloc_c02.tif	S	40	300	2	500
n0008_coloc_c02.tif	S	40	300	2	500
n0009_coloc_c02.tif	S	40	300	2	500
n0010_coloc_c02.tif	S	40	300	2	500
n0011_coloc_c02.tif	S	40	300	2	500
n0012_coloc_c02.tif	S	40	300	2	500
n0013_coloc_c02.tif	S	40	300	2	500
n0014_coloc_c02.tif	S	40	300	2	500
n0015_coloc_c02.tif	S	40	300	2	500
n0016_coloc_c02.tif	S	40	300	2	500
n0017_coloc_c02.tif	S	40	300	2	500
n0018_coloc_c02.tif	S	40	300	2	500
n0019_coloc_c02.tif	S	40	300	2	500

n0020_coloc_c02.tif	S	40	300	2	500
n0021_coloc_c02.tif	S	40	300	2	500
n0022_coloc_c02.tif	S	40	300	2	500
n0023_coloc_c02.tif	S	40	300	2	500
n0024_coloc_c02.tif	S	40	300	2	500
n0025_coloc_c02.tif	S	40	300	2	500
n0026_coloc_c02.tif	S	40	300	2	500
n0027_coloc_c02.tif	S	40	300	2	500
n0028_coloc_c02.tif	S	40	300	2	500
n0029_coloc_c02.tif	S	40	300	2	500
n0030_coloc_c02.tif	S	40	300	2	500
n0031_coloc_c02.tif	S	40	300	2	500
n0032_coloc_c02.tif	S	40	300	2	500
n0033_coloc_c02.tif	S	40	300	2	500
n001_G1_IMR90_PCNA_Cy3 dUTP_60x.tif	G1	40	300	2	500
n002_G1_IMR90_PCNA_Cy3 dUTP_60x.tif	G1	40	300	2	500
n003_G1_IMR90_PCNA_Cy3 dUTP_60x.tif	G1	40	300	2	500
n004_G1_IMR90_PCNA_Cy3 dUTP_60x.tif	G1	40	300	2	500
n005_G1_IMR90_PCNA_Cy3 dUTP_60x.tif	G1	40	300	2	500
n006_G1_IMR90_PCNA_Cy3 dUTP_60x.tif	G1	40	300	2	500

n007_G1_IMR90_PCNA_Cy3 dUTP_60x.tif	G1	40	300	2	500
n008_G1_IMR90_PCNA_Cy3 dUTP_60x.tif	G1	40	300	2	500
n009_G1_IMR90_PCNA_Cy3 dUTP_60x.tif	G1	40	300	2	500
n010_G1_IMR90_PCNA_Cy3 dUTP_60x.tif	G1	40	300	2	500
n011_G1_IMR90_PCNA_Cy3 dUTP_60x.tif	G1	40	300	2	500
n012_G1_IMR90_PCNA_Cy3 dUTP_60x.tif	G1	40	300	2	500
n013_G1_IMR90_PCNA_Cy3 dUTP_60x.tif	G1	40	300	2	500
n014_G1_IMR90_PCNA_Cy3 dUTP_60x.tif	G1	40	300	2	500
n001_G2_IMR90_PCNA_Cy3 dUTP_60x.tif	G2	40	300	2	500
n002_G2_IMR90_PCNA_Cy3 dUTP_60x.tif	G2	40	300	2	500
n003_G2_IMR90_PCNA_Cy3 dUTP_60x.tif	G2	40	300	2	500
n004_G2_IMR90_PCNA_Cy3 dUTP_60x.tif	G2	40	300	2	500
n005_G2_IMR90_PCNA_Cy3 dUTP_60x.tif	G2	40	300	2	500
n006_G2_IMR90_PCNA_Cy3 dUTP_60x.tif	G2	40	300	2	500
n007_G2_IMR90_PCNA_Cy3 dUTP_60x.tif	G2	40	300	2	500
n008_G2_IMR90_PCNA_Cy3 dUTP_60x.tif	G2	40	300	2	500
n009_G2_IMR90_PCNA_Cy3 dUTP_60x.tif	G2	40	300	2	500
n010_G2_IMR90_PCNA_Cy3 dUTP_60x.tif	G2	40	300	2	500
n011_G2_IMR90_PCNA_Cy3 dUTP_60x.tif	G2	40	300	2	500
n012_G2_IMR90_PCNA_Cy3 dUTP_60x.tif	G2	40	300	2	500

n013_G2_IMR90_PCNA_Cy3 dUTP_60x.tif	G2	40	300	2	500
n014_G2_IMR90_PCNA_Cy3 dUTP_60x.tif	G2	40	300	2	500
n015_G2_IMR90_PCNA_Cy3 dUTP_60x.tif	G2	40	300	2	500
n001_S_IMR90_PCNA_Cy3d UTP_60x.tif	S	40	300	2	500
n002_S_IMR90_PCNA_Cy3d UTP_60x.tif	S	40	300	2	500
n003_S_IMR90_PCNA_Cy3d UTP_60x.tif	S	40	300	2	500
n004_S_IMR90_PCNA_Cy3d UTP_60x.tif	S	40	300	2	500
n005_S_IMR90_PCNA_Cy3d UTP_60x.tif	S	40	300	2	500
n006_S_IMR90_PCNA_Cy3d UTP_60x.tif	S	40	300	2	500
n007_S_IMR90_PCNA_Cy3d UTP_60x.tif	S	40	300	2	500
n008_S_IMR90_PCNA_Cy3d UTP_60x.tif	S	40	300	2	500
n009_S_IMR90_PCNA_Cy3d UTP_60x.tif	S	40	300	2	500
n010_S_IMR90_PCNA_Cy3d UTP_60x.tif	S	40	300	2	500
n011_S_IMR90_PCNA_Cy3d UTP_60x.tif	S	40	300	2	500
n012_S_IMR90_PCNA_Cy3d UTP_60x.tif	S	40	300	2	500
n0013_S_IMR90_PCNA_Cy3 dUTP_60x.tif	S	40	300	2	500
n0014_S_IMR90_PCNA_Cy3 dUTP_60x.tif	S	40	300	2	500

Supplementary file 1i: Software and macros

Name	Version	Website	Company/University	Application
Volocity	6.3	-	PerkinElmer, USA	Acquiring live cell time lapses
ImageJ	1.53c	https://imagej.nih.gov/ij/	Wayne Rasband, National Institutes of Health, USA	Image processing and image analysis
RStudio	1.1.447-1.2.5033	https://rstudio.com/	RStudio	Statistical analysis and plotting
Harmony	3.5.1	https://www.perkinelmer .com/product/harmony- 4-8-office-hh17000001	PerkinElmer, USA	High content microscopy imaging and analysis
KNIME Analytics Platform	3.5.2	https://www.knime.com/ knime-analytics-platform	KNIME AG, Switzerland	High content microscopy image processing and analysis
Adobe Illustrator CS6	16	https://www.adobe.com/	Adobe, USA	Graphical sketch and figures arrangement

Supplementary references:

- Chagin VO, Casas-Delucchi CS, Reinhart M, Schermelleh L, Markaki Y, Maiser A, Bolius JJ, Bensimon A, Fillies M, Domaing P, Rozanov YM, Leonhardt H, Cardoso MC. 2016. 4D Visualization of replication foci in mammalian cells corresponding to individual replicons. *Nat Commun* **7**:11231. doi:10.1038/ncomms11231
- Erfle H, Neumann B, Liebel U, Rogers P, Held M, Walter T, Ellenberg J, Pepperkok R. 2007. Reverse transfection on cell arrays for high content screening microscopy. *Nat Protoc* **2**:392–399. doi:10.1038/nprot.2006.483
- Kenny MK, Schlegel U, Furneaux H, Hurwitz J. 1990. The role of human single-stranded DNA binding protein and its individual subunits in simian virus 40 DNA replication. *J Biol Chem* **265**:7693–7700. doi:10.1016/S0021-9258(19)39170-7
- Li CM, Miao Y, Lingeman RG, Hickey RJ, Malkas LH. 2016. Partial purification of a megadalton DNA replication complex by free flow electrophoresis. *PLoS ONE* **11**:e0169259. doi:10.1371/journal.pone.0169259
- Nichols WW, Murphy DG, Cristofalo VJ, Toji LH, Greene AE, Dwight SA. 1977. Characterization of a new human diploid cell strain, IMR-90. *Science* **196**:60–63. doi:10.1126/science.841339
- Rausch C, Zhang P, Casas-Delucchi CS, Daiß JL, Engel C, Coster G, Hastert FD, Weber P, Cardoso MC. 2021. Cytosine base modifications regulate DNA duplex stability and metabolism. *Nucleic Acids Res* **49**:12870–12894. doi:10.1093/nar/gkab509
- Tanaka S, Hu SZ, Wang TS, Korn D. 1982. Preparation and preliminary characterization of monoclonal antibodies against human DNA polymerase alpha. *J Biol Chem* **257**:8386–8390. doi:10.1016/S0021-9258(18)34343-6
- Waseem NH, Lane DP. 1990. Monoclonal antibody analysis of the proliferating cell nuclear antigen (PCNA). Structural conservation and the detection of a nucleolar form. *J Cell Sci* **96 (Pt 1)**:121–129. doi:10.1242/jcs.96.1.121